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Abstract. The phenomena of macroscopic quantum tunnelling and coherence ofééle N
vector are investigated for small single-domain antiferromagnetic particles. Both the Wentzel-
Kramers—Brillouin exponents and the pre-exponential factors are found exactly for the tunnelling
rates, for various forms of the magnetocrystalline anisotropy. The calculations are performed on
the basis of the two-sublattice model and the instanton method applied to the spin-coherent-state
path integral.

1. Introduction

Macroscopic quantum phenomena (MQP) have been studied extensively since Caldeira
and Leggett predicted that quantum tunnelling could take place on a macroscopic scale
if the dissipative interactions with the environment were small enough [1, 2]. Leggett
and co-workers presented a formalism which could include the dissipation by using the
imaginary-time path integral and the instanton method, and they found that the rate of
guantum tunnelling was reduced by the dissipation in general [1-4]. The Caldeira—Leggett
method has been considered extensively for the systems of Josephson junctions [5-7] and
superconducting quantum interference devices (SQUIDS) [8].

Recent advances in both materials preparation techniques on nanometre-size magnetic
particles and low-temperature magnetometry have made it possible to observe the new
MQP in magnetic systems. It has been theoretically pointed out that the magnetization
vector can change its direction through an energy barrier by means of quantum tunnelling
in small single-domain ferromagnetic (FM) particles at low temperature [9-11]. Similar
effects include quantum nucleation of FM bubbles [12] and quantum depinning of domain
walls from defects in bulk ferromagnets [13—-16]. Several experiments have investigated the
guantum tunnelling in small magnetic particles either via relaxation measurements [17-19]
or via measurements of the noise spectrum and the ac susceptibility [20, 21]. Experimental
results seem to support the idea of magnetic quantum tunnelling.

MQP also exist in the small single-domain antiferromagnetic (AFM) particles in which
the Néel vector can tunnel coherently between the easy directions at a temperature well
below the anisotropy gap [22—-27]. For such quantum tunnelling problems, the difference
between an AFM particle and a FM patrticle originates from the configuration of the spins
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in the classical state. The spins remain exactly parallel in the FM particle. But in the
AFM particle, the spins belonging to the two sublattices are inclined with respect to one
another, according to the two-sublattice model. Thus, the AFM state is less favourable
energetically than the FM state, which leads to a much larger resonance frequency between
the wells separated by the magnetic anisotropy in AFM particles than that in FM particles.
Formally, the ratd” for quantum tunnelling can be written & exp(—U /hw,), Where

U is the energy barrier between the wells amgl is the resonance frequency. So the
tunnelling rate in an AFM particle is much larger than that in a FM particle. Therefore,
an AFM particle is a better candidate as regards the observation of MQP than a FM
particle. The quantum tunnelling of theéMl vector was investigated on the basis of the
two-sublattice model [22—-25, 27] and the anisotrapimodel [26] independently. Quantum
tunnelling is also important in the problems of quantum nucleation of AFM bubbles [25, 26]
and quantum depinning of domain walls from defects in bulk antiferromagnets at low
temperature [23].

In general, MQP can be classified into macroscopic quantum tunnelling (MQT) and
macroscopic quantum coherence (MQC). MQT corresponds to the simple tunnelling of a
macroscopic variable through a potential barrier, while MQC corresponds to the resonance
of two energetically degenerate states. The tunnelling behaviours of @bk Wdctors in
MQT and MQC problems will be considered for small single-domain AFM patrticles in this
paper. In previous work, the exponential factors in the Wentzel-Kramers—Brillouin (WKB)
rates were calculated for a few simple examples of MQC and MQT of thel Mector,
but the pre-exponential factors in the tunnelling rates were not definitively established [22—
24, 27]. The purpose of the present paper is to extend the previous results by calculating
both the WKB exponents and the pre-exponential factors in the tunnelling rates (for MQT
problems) or the tunnel splittings (for MQC problems) for all major crystal symmetries.
So the results obtained in this paper will be more applicable in experimental checks. All
of the calculations in this paper are performed in terms of the spin-coherent-state path
integral.

This paper is organized as follows. In section 2, we present a formalism for evaluating
the exponent and the prefactors in the WKB tunnelling rate for a more general form of
the magnetocrystalline anisotropy energy and the Zeeman energy when a magnetic field
is applied. In section 3, we apply the general formulae of section 2 to MQT of the
Néel vector for biaxial and tetragonal crystal symmetries, and in section 4, to MQC for
cubic, uniaxial and hexagonal crystal symmetries. Finally, a summary will be given in
section 5.

2. Calculation of the tunnelling rate for the AFM patrticles

In this section, we will present a formalism for calculating the tunnelling rate (in the MQT
problem) and the tunnel splitting (in the MQC problem) for theelNvector in a small AFM
particle on the basis of the two-sublattice model and the instanton method applied to the
spin-coherent-state path integral, without assuming a specific form of the magnetocrystalline
anisotropy and the Zeeman energies.

According to the two-sublattice model [23], there is a strong exchange energy
my - my/x, for the two sublattices, wheren;, m, are the magnetization vectors of
the two sublattices with large, fixed and unequal magnitudes, yands the transverse
susceptibility. Under the assumption that the exchange energy for the two sublattices is
much larger than the magnetocrystalline anisotropy energy and the Zeeman energy when a
magnetic field is applied, the Euclidean action for a small noncompensated AFM particle
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(neglecting dissipation) is given by [22, 23]

2 2
Sel0(x, 1), p(x, T)] = %/dr/dg’x {ZX_); [(g—f) + <3—f) Sin20j|

+ %a [(V6)? + (Vg)?sir? 0] + E(, ¢)} (1)

wherey is the gyromagnetic ratiay is the exchange constant associated with the boundary
effect of the particle surface and= it is the imaginary timef and¢, which can determine
the direction of the el vector, are the angular componentsofin the spherical coordinate
system. The magnetocrystalline anisotropy and Zeeman energies are included {8 ,the

term in equation (1).

As pointed out in references [22] and [23], for a nanometre-size AFM particle, &eé N
vector may depend on the imaginary time but not on the coordinates, because the large
spatial derivatives in equation (1) are suppressed by the exchange interaction between two
sublattices. So all of the calculations done in the present work are for the homogeneous
Néel vector. Therefore, equation (1) reduces to

v i [ (doN?  [dp\? .
SE(G,¢)—ﬁ/dr {272[(&) *(E) S|n29}+E(9,¢)} @

whereV is the volume of the AFM particle.
To obtain the tunnelling rate for MQT or the tunnel splitting for MQC, the following
path integral should be calculated:

/ D{6) D{#} expl—Sz(©. #)] ®)

where the Euclidean actio$y (6, ¢) has been defined in equation (2). The paths appearing
in the above equation are fixed at the end points +7/2.

Now we use the standard instanton method to evaluate the path integral in equation (3).
The calculation consists of two major steps. The first step is that of finding the classical
or least-action path which gives the WKB exponential factor. The second step is that of
evaluating the Van Vleck determinant of the small fluctuations about the classical path,
which gives the pre-exponential factors in the tunnelling rate. The calculations for MQT
and MQC are very similar, so we will discuss only the former explicitly.

To execute the first step, we must find the classical gétlp) with the boundary
conditionsf(t = +7/2) = 6, and$(t = +£T7/2) = ¢.. The classical path satisfies the
following equations of motiond Sg = 0):

dezé XL d(i 2 .= ~ JoE
Va2 yz(dt) siné cosd + 30

x. d dp\ ., - _JE
L a (o) sa] = 5

In order to evaluate the Van Vleck determinant for small fluctuations about the classical
path, we write

0(7) = 0(t) + 61(7) ¢(v) = ¢(1) + ¢1() (5)

and expand the Euclidean action in equation (2) to the second ordgrasfd ¢1, which
gives the following expression:

Se®, ) = S + 828 (6)

(4)
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where
14 x1 [ doy der \° ¢ dep1
2
S==1]d — | — sinf 6 —= 2 — 10
h 4 |:2y2(dr> (dr +y sin de J\ar )7t
dg\?
=+ 5 COoS 2 d 91 + = (E@gel + 2E9¢91¢1 + E¢¢¢)1) (7)
Sq in equation (6) is the classical action which minimizes the Euclidean aclgf. Ey,
and E4, in equation (7) are defined as
9°E g _ OE
362 |y_5.4; RANFVEYS
respectively. Assuming that

1 XL d dG_
“E AL
2 ¢¢+4y2 dr |: nm(dt>]>0

we can perform the Gaussian integration oggrwhich leads to the effective action fét

9°E

Egyg = Eyp = 202

0=0.¢=¢ 6=0.9=¢

only:
1(91)—/dr [A<@> +Bel<?fl>+cel} 8)
Here,
_Voxa de xo df_. _-/dd
A_fﬁ{l |:2y szze(dr) ]/(ZE‘MHLW E[smm(a)})} (9a)
_Vx - ( do
B=722° 29(dr>
d d 1 df . _-/dd
X {E9¢_ Xéd |:Sm29<df>:|}/{§E¢¢+Ai(_yl2 E[S”—lm(a)]}
(9b)
V1 x1 (dp)\? =
C_f{EEQMLﬁ(E) cosd

1 x1 d do x. d dé
_Z[EM 77 4 [S|n29<dr>ﬂ/[2E¢¢+4y2 ar sin o .
(%)
We now turn to the normalization factor for the remaining path integral 8vem the

spin-coherent-state representation, the measure of the path integral in equation (3) is defined
as

25 +1 -
/ D{#} D{¢} :n'Lmooﬂ[ 4+ } f sinfy oy, de s (10)

T

where6, = 0(—T/2+ kn) and¢, = ¢p(—T/2+ kn), andn = T/(n + 1) is the width of
the imaginary-time slicesS in equation (10) is the total spin in one sublattice of the AFM
particle. In addition to generating contributions to theand C-terms in equation (8), the
Gaussian integration over ; will yield a factor of
1/2
D} S
=0

d do
{Znh/(nV[E¢¢(9k,¢k)+2Xl2 = <S|n29<dt)>
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Then the path integral in equation (3) can be written as
NS / [d6y] e /o) (12)

where

;e 125 +1
v [1[%57]
— - = XL d . = de_
x \/h/{nZnV[E¢¢(9k,¢k)+2—y2 E(S'””(a» -

_“sinék. (13)
0=0,

It is easy to obtain the following relation for the transverse susceptibilitywith the
exchange energy density for the two sublattices [24]:

R?y?
= —=5° 14
XL="3 S (14)
In the limit of large S, equation (13) reduces to
= lim [JcAi/=m"? (15)
n—)ook:l
where
V x d do
Al = J_ T 25|n29k/[E¢¢(9k,¢k)+ 27 dr (stB(d )) é—ék]' (16)
Next, we change to a new time variable, which is defined by
d; = dr/2A4'(0(x), ¢(1)). (17)

Then, in terms of discretized variables, the path integral in equation (3) can be cast into the
standard form for a one-dimensional motion problem [11, 28-30]:

_ ) n d91 k 1 1 Ak
Sel m | | E N — 2
€ n||—>oo |: / 27TAki| { —1 |:2Ak ( )(le elk l) * 2AkA Ckel k]}

(18)

wheref; o = 0 and A, the width of thekth imaginary-time slice irt, is given by
Ay = & — Gk—1 = 1/24A. (19)
We have definedi; = A, ¢) andC, = C'(6;, #) in equation (18), where

r_ VXJ_ d ~ dd_)
C'=C - 2 o {stB(E)

(oS aelona(5)])/ G s 35 03 ()])

(20)

The remaining procedure for evaluating the Van Vleck fluctuation determinant of the
guadratic form off, in equation (18) for the AFM particles is very similar to that for

the FM particles [11]. Here we only give a summary of how to evaluate the tunnelling
rate or the tunnel splitting for the AFM particle. The first step is to obtain the classical
path which satisfies the boundary conditions from the equations of motion. The second step
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is to differentiate the classical path to obtaify/dz, then convert fromr to the new time
variable¢ according to the relation in equation (17), which gives

do
— =aqe ¥ as¢ — oo. (21)
dr
Then the tunnelling rat€& is [11, 28-30]
T = kela|(u/m)Y2e 5 (22)

wherek, is the number of equivalent escape directions, i.e., the number of paths which
have the same classical action. Only the asymptotic relation in equation (21) is needed for
calculating the tunnelling rate, and this is usually easy to obtain.

In performing the Gaussian integration ov&r, we have assumed that

1 XL d dé
§E¢¢+4 Z 4 [sn29<d1>] > 0. (23)

If the above condition is not satisfied, we can always finish the calculation by performing the
Gaussian integration oveé. In this case, the condition of the positivity of the coefficient
of 62 can be written as

1 dp \ 2
§E99+2 200529<dr> > 0. (24)
After performing the Gaussian integration ovgr the effective action fop, is given
by
d
I(¢1) = / de [E(%) +F¢1< ")1) +G¢1] (25)
with
Vo do do \?
E_fz_ mze[ { CO§9<dr> }/{E99+ COSZB(dr)

deb _(dp\?
F = _%X_;[Ewsmzy(dfﬂ/[&m +$—Lcos$<df) } (26)
v dg\®
GZE_[E¢¢_E§¢ {E99+;(/ COSZP(d(f) }:|

The Van Vleck fluctuation determinant can be evaluated by using the techniques already
described, and we will not discuss it any further. In the following two sections, we will
apply the formulae derived in this section to calculate both the WKB exponents and the
Van Vleck fluctuation determinants of the tunnel splittings (in MQC problems) and the
tunnelling rates (in MQT problems) for the&dl vector in small AFM particles for different
forms of the magnetocrystalline anisotropy energies and the external magnetic fields.

3. Macroscopic quantum tunnelling

In this section, we will apply the formalism of the previous section to investigate the
tunnelling behaviours of the &l vector in MQT problems with biaxial and tetragonal
crystal symmetries, separately.
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3.1. Biaxial symmetry

The system that we consider has biaxial symmetry. Let the easy axis &ed the hard
axis bex. In the presence of an external magnetic fiéldantiparallel toz, the E(09, ¢)
term in the Euclidean action can be written as

E(0,¢) = (K1 + K»sir? ¢) sif0 — mH (1 — cost) (27)

where K; and K, are the longitudinal and transverse anisotropy coefficients, respectively.
Like in the problem studied in reference [23], we also assume that the transverse anisotropy
coefficient is much larger than the longitudinal one, which agrees with the experimental
situation for highly anisotropic materials (such as rare-earth material&). equation (27)
is defined asn = m1 —my = hys/V <« m1, wheres is the excess spin of the AFM particle
due to the small noncompensation of the two sublattices.

WhenH < H. = 2K1/m, the energy minima of the system aregat= 0 andd = 0, r.
H. is the coercive field at which the initial state becomes classically unstable. We note
that there also exists a spin-flop field which can destroy the spin configuration in an AFM
particle. The magnitude of such a field is smaller than that of the coercive field in general.
So all of the calculation done in this section is under the condition that the applied magnetic
field is smaller than the spin-flop field. Therefore, the two-sublattice configuration is still
valid for the AFM particles atd # 0.

In the presence of a magnetic field applied in the-direction, there is a metastable
state ath = 0, ¢ = 0. To decay out of the metastable state, tteeN/ector must rotate by
the anglet+6;, which satisfies

. o0
smz(—l) — (28)
2
wheree = 1— H/H,. Substituting equation (27) into the classical equations of motion, we
obtain the following bounce solution forQ ¢ < 1:
$=0
sinz(é> _ 1—tantf(wov/e7)
2)  a—tantf(wo/eT)

where
%
wg = E—S\/ 2K.J and A= 1/6 (29)
corresponding to the variations 6ffrom 6 = 0 att = —oo to the turning point® = +6;

att = 0, and then back t6 = 0 att = +oo. The classical action§2--, associated with
the bounce path for the biaxial symmetry is found to be

ez (i)
Sit =20 ZEs | Ve 5—n T (30)

where S is the total spin in one sublattice of the AFM particle.
To evaluate the prefactors, we note that

1 x. d[ . -(/dd - L0 50
EE'M’ + v E[SIHZQ(E)} = K25|r129+4Kls|n2§<e — sir? E)

+ Klsinzé(e —1Oesin2% —25ir?%+123irf" %) (31)
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which is positive, so we can integrate opt. After some complicated calculations, we
obtain the following relation between and the new time variablée:

_h h 2K 1 1+ /e
T_ZVK252§+VK2’/ [3[ (1—e)|n<1_ﬁ>:|. (32)

And it is easy to differentiate the classical path to obtain

2K1J\/%6exp{ 2K [3 —f(l—e)ln<1+f>}}

1- /e

X exp(— %S;) as¢ — oo. (33)
Thus,

2K 1+

la] = 2K41J exp{—? [3 —f(l—e)ln( j:)“

and
K1J6
= |2, 4
% 2K7 N (34)

Substituting equation (34) into the general formula (22), and ugjng: 2 and equation
(30) for S2-5-, we obtain the tunnelling rate for this MQT problem:

[BS. 213 Vg <K11)3/4 e { 2K,
= — =K2| —5
N K?

« [36 —Jel-o) In< + ?)“ §12g4" (35)

The same model has been considered, but only the WKB exponent has been calculated
in reference [27] for the limiting cas® — H.. The WKB exponent in reference [27] is
consistent with the result in equation (30) of the present work for the small noncompensated
AFM particle atH — H.. Furthermore, both the WKB exponent and the pre-exponential
factors in the tunnelling rate are evaluated exactly for & < H. in the present work.

Suppose that the excess spin of the AFM particle is solely due to the small
noncompensation of two sublattices at the surface. It has been argued [22] that for an
AFM particle with N spins, N2 spins are at the surface, and thus the number of excess
spins due to statistical fluctuations of the shape is alotidt®)/2 = N¥3. For a particle
of about 16 spins, the number of excess spins would be 10, which is a small fraction of
the N ~ 10° spins in the particle.

Typical values of parameters for the small AFM particle &e = 10° erg crrr3
K, = 107 erg cnm3 and J = 3.0 x 10° erg cnt3. The particle radius iR = 30 A and
the total spin in one sublattice i = 5000. For these values, the MQT rate would be
1.20x 102 stfor H/H, = 0.55 (€ = 0.45) and 197x 10° s for H/H, = 0.7 (¢ = 0.3).

The tunnelling rate is found to increase significantly with the external magnetic field because
the field decreases the energy barrier between the two nonequivalent wells.

3.2. Tetragonal symmetry

The E (6, ¢) term for tetragonal crystal symmetry is given by
E@®, $) = K1 Sirt 6 — K, cog4e) sin'* 6. (36)
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We shall consider the case in whi&y > K; > 0 where¢ = 0, 6 = 0 is a metastable state
and¢ = 0,0 = /2 is a stable state for the@dl vector. To decay out of the metastable
state, the Mel vector must rotate by the angt®;, which satisfies
sirf6; = 1/v (37)
wherev = K,/K;1 > 1. The maximum ofE (6, ¢) corresponds to st, = 1/2v. Sub-
stituting equation (36) into the classical equations of motion, we obtain the following bounce
solution:
$=0
_,~ 1l—tani?
sig — 1 tenff(wor)
v — tanh"(wot)
corresponding to the variations 6ffrom 6 = 0 att = —oo to the turning point® = +6;
att = 0, and then back t6 = 0 att = +00. wg in equation (38) is defined as

(38)

Vv
= —+/2K1J.
YT psV et
The classical actions’*-, associated with each bounce path for the tetragonal symmetry is
found to be
2K -1 1
srs = [ZLg 1-72 |n<ﬁ+ ) ) (39)
J 2/v Jv—1
Note that
1 XL d . — de_ . — ) — A —
TEsp+ 2= —|sin¥| =) | = Kisinf0[24 (5v — 3)sirfd + dvsinto 40
5 ¢¢+4y2 df[sm <dr)} 1SiMP 0 [2+ (5v — 3) sinf 6 + 4v sin’ 7] (40)

which is positive, so we can integrate apf. The relation betweer and the new time
variable¢ is then found to be

1 Tv—1 1

po Ve Ay P In<ﬁ+ ) . (41)
4/’1)/2K1 wo 4\/; \/_—1

As ¢ — oo, we have

do v 1 v—1 (Jv+1 1 /27

— =2%2__ /K.J | -1 = [==8¢ ). 42
dr rsY fv—lexp[ 4v n(f—1> }exp< 4V K1 {) )
Thus,

% 1 Tv—1 (Jv+1
=2%2_ /K | -1
=" ”J_v—lexp[ NG ”(f—l) ]

1 [27
- - | 43
LR (43)

Substituting equation (43) into the general formula (22), and uging: 4 and equation
(39) for the classical action, we finally obtain the tunnelling rate for the tetragonal crystal

symmetry:
TS — —211/4Z 4 yza_L exp -l In yl) 1| s Y2eSi", (44)
ml2p ot Jr—1 4 \Jv—-1
For K, = 1P erg cnm3, J = 3.0 x 10° erg cnt3, R = 30 A and S = 5000, we obtain
IS =371x10* st forv =12 andl'"S =215x 1% s for v = 1.5. It is found that
the tunnelling rate is larger for higher (=K,/K;). So we predict that highly anisotropic
materials would be likely to exhibit MQP in AFM systems.

and
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4. Macroscopic quantum coherence

In this section we will apply the formalism in section 2 to three examples of MQC. In a
small AFM particle, MQC corresponds to the resonance of telNector between the
energetically degenerate easy directions. The MQC problems studied in this section are for
cubic, uniaxial and hexagonal crystal symmetries, respectively.

4.1. Cubic symmetry

In the absence of an external magnetic field, 1@, ¢) term for cubic crystal symmetry
is given by
E@.¢) = Ki(afa? + ool + a?a?) (45)

whereea,, o, anda, are the direction cosines of theéll vector. In terms ob and ¢,
equation (45) can be written as

E@®,¢) = %Klsin“e(l—cos%)Jr%Kl(l—coszﬁ). (46)

Here we will consider the tunnelling behaviours of thédNvector for the cases where
K1 > 0 andK; < 0 cases individually.

If K; > 0, the energy minima of the system correspong te 0 andé = 0, = /2. Then
the easy axis is along [100]. If we denote the two statgd)aagnd|2), other energy minima
will repeat the two states with periad. So the Neel vector can resonate between these
energetically degenerate directions. Substituting equation (46) into the classical equations
of motion, we obtain the following instanton solution corresponding to the switching of the

Néel vector fromp =0 att = —oco t0 0 = /2 att = +oo:
=0

sind® = = (47)

" coshwot)

where g is the same as in section 3. The classical acti§fp;-, associated with this
instanton for the cubic symmetry is then found to be

SG5 = f—;s. (48)
To find the prefactors, we note that

;E¢¢+% %[Sinﬂ(j—i)] =K [%Jr%coszzé—%cosgzé} (49)
which is positive, sap; can be integrated out. Then we obtain the relatiorr afith the
new time variable;: :

JVxo

= 2hy2K,

It is easy to differentiate the classical path to obtain

@ 2V J
5 = arsVEKU exp(—,/z—Kl&) as¢ — oo. (51)

2V
|Cl| = E__V K]_J

hS

1
{4 5-(2-1n2). (50)

Thus,
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nw= IZLKlS. (52)

Substituting equation (52) into the general formula (22), we obtain one instanton’s
contribution,#ASS:, to the tunnel splitting for the cubic symmetry for tiig > O case:

23/4
67'[1/2
Now we use the effective-Hamiltonian method [4] to obtain the ground-state tunnelling level
splittings for this system. The effective Hamiltonian of the system can be written as

Hypp = —hAGTM (54)

and

— 1/4 _ _¢C.S.
RAGYS = VKA e S (53)

where M is a linear operator defined by
Mijpy=1j+1+1j-1) (55)

where|j) is one of the two energetically degenerate states. For the present case, the matrix
form of H.sf is

_ 9 AC.S.
0 2RAGY } (56)

o= amagy o
Then a simple diagonalization df,;; shows that the energies a2 ASS-. Therefore,
the tunnel splitting of the ground state 4”5 = 4A%3:, which is equivalent td, = 4 in
the general formula (22). s
For K, =10 erg cnt3, J = 3.0 x 10° erg cnt3, R = 30 A and S = 5000, we obtain
the tunnel splitting of the ground stareS: = 4.83 x 10° s* for cubic symmetry for the
K. > 0 case.
If K; < 0, the easy axis is along [111]. Now the energy minima of the system correspond
to ¢ = n/4 andb = 6,, ® — 01, where SiRg; = 2/3. If we denote the two states #b
and |2), other energy minima will repeat the two states with periadA simple analysis
of E(9, ) shows that there are two types of instanton for the present case. W ttse
denote the instanton passing through the barriér-atz /2 fromé = 6, to 6 = = — 6,1, and
B to denote that passing through the barrief at = from6 = 7 — 01 t00 = 7 + 61 (=61).
Substituting equation (46) into the classical equations of motion, we obtain the instanton-

A solution for theK; < 0 case:
b4 =m/4

- tan6,

tanfy = ———— 57

4 tanh(w17) (57)

corresponding to the transition of theédl vector fromd = 0, at7 = —co t0 6 = 7 — 6,
at T = 400, and the instanto® solution:

dp =m/4

tandy = tand; tanhw; 1) (58)
corresponding to the transition of theedl vector fromd = 7 —6; at T = —oo to
0 =m+ 6, (=0,) att = 400, where

Vv 1|K ¥
W1 = =4/ = .
T
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And the classical actions for instantodsand B are found to be

S§5 = \/@ [1 S arcta<f)] (59)

Cc.S. _ |Kl| 1
S5t =\ =37 [1+ \/Earctar(x/i)}S (60)

for the K; < O case. It is noted thas{* < S§% because the energy barrier that the
instantonB must tunnel through is higher than that for the instanton
Now we turn to the prefactors. Now,

1 d do 1 8 ,- 25 ,- _

sin2 = |K1|[ = — = sifd + = sin*6 — 3sirf o 61
2"’¢+42d[ <d)] '”(3 3Smet g (61)
which is positive for the instantoA or B, so we can integrate ogh directly. The relation
of t with the new time variable is then found to be

3V, 31 11 r( )
= —="C+- arcta 62
F0K T dm, 4f2w1 NE (62)
for the instantonA and
3J/Vix.L 31 11 1
T = ——— +———|———arctar(«/§) 63
52K Ay T aBen (63)

for the instantonB. It is easy to show that, as— oo,

dQ_A 252y M 3 11 1 1/3J

& =3 J|K1|exp_—§+ﬁarctar(ﬁ)} ex <—— T |S§) (64)
and

doy 252 v 3 11 3J

—_— = — K I — 5 T 1

=7 J| 1|eX|O_ > 2 arctaqf):| exp( |K1|S§) (65)

Reading off|a| and i in equations (64) and (65), and substituting them into the general
formula (22), we obtain the contributions to the tunnel splitting of this system},* and
hASS: corresponding to the instantorsand B respectively:

RASS = ﬂwk |14 3% ex 3 + . §-2g7S5* (66)
AT Tijegsa 10 PI=5* 22 /2
RAGS = _2R VK1 Y4 %% ex 3 u arctanv/2) | s¥2e~S5" (67)
B T 1/235/4 1 p 5>~ 232 .
Now the matrix form of the effective Hamiltonian fa€; < O is
0 _}_l(AC.S. + ACAS.)
Heff = |: _E(Ag.S. + Ag.s.) A 0 B . (68)

Then the eigenvalues of the system are found ta-beA§S- + ASS), whereAGS > AGS-.
Therefore, the tunnel splitting of the ground state&i%s = 2(AC S+ AGS).

Taking |K1| = 10° erg cnt3, J = 3.0 x 10° erg cn13, R = 30 A and S = 5000, the
tunnel splitting of the ground stat&“-S would be 552 x 10'° s7* for the K; < O case.



Resonant quantum tunnelling 3607

4.2. Uniaxial symmetry

Our second example of MQC is a system with an easy axand a hard axise. The
magnetic field is applied along. Now the E(6, ¢) term can be written as
E(9, ¢) = K1Sirf 0 + K, si? 0 sir? ¢ — m H sind cosp + m2H? /4K,
= K1(sin® — sinfp)? + 2K1 sinfy sind (1 — cosep) + K, Sint 6 sin’ ¢ (69)
where K, > K1 > 0 and sirdp = mH/2K;. It is also assumed in this section that the
applied magnetic field is smaller than the spin-flop field, which is smaller than the coercive
field H. = 2K;/m in general. The energy minima of the system are at 0 and6 = 6,
T — 90.
Substituting equation (69) into the classical equations of motion, we obtain the instanton
solution
$=0
. = 1+ sinfpcos cosh
sing = — >N o COSGoT) (70)
sindp + coshwg CoSHT)
which corresponds to the variation @from 6 = 6y att = —0cot0 6 = 7w — 6y at T = +o0,

where
|4
wo = E—S\/ 2K1].

The classical action associated with this instanton for the uniaxial symmetry is found to be

K COSH,
sY5 =232 215costy|1— 2tandparctar] ———2 ) |. (71)
J 1+ sinby

To find the prefactors, we note that

1 XL d . — dé . = .= )
ZE 2= _—|sin®| — ) | = K, sinf 0 + K41(sind — sindg)?
> oo T+ 42 d‘l,’|: <d‘c)i| 2 + K1( o)

— 2K Sif6(sind — sindp)? + K1 sif 6 — K, sin4(sind — sinfy) (72)

which is positive, so we can integrate apt. After some complicated calculations, we
obtain the relation between and the new time variable:

h g2 K1 1+ sinfy + cosby
T = _ - n
2K,V ¢ K> wo 1+ sinfp — cosby
K1 C0sf
4—— costy | 1 — tanfp arctarf ——— 73
+ K> wo O[ 0 r(1+S|n90>:| ( )

for 0 < H < H,. Itis a simple matter to show that, as— oo,

1+ sinfp + coshy \ K/ K2 costh
1+ sin6y — coshy

C0SHy Kq,J
1 - tangparctanl ——— expl — | —= S cosh . 74
x [ 0 r<1+sin90)“ p( \ 2K2 °§> (74)

Reading offla| andu in equation (74), and substituting them into the general formula (22),
we obtain one instanton’s contributiohAY4:, to the tunnel splitting of this system as

_ 25/4 KiJ\¥4 1+ Sinfg + cosdy \ K/ K2 costo
RAYS = Z_vEK,( =X ) s Y2(costp)®? + SINflo + COStlo
o 1+ sinfp — cosby

Jr K2

2

3—9 = 2wo CO§ 90(

K
exp{ 4= cog,
T K>

K coSsbp s,
exp{ —4— cog 6y | 1 — tanby arctar{ ———— e S, 75
x p{ K> O|: 0 r(1+S|n90>:|} ( )
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Now we apply the effective-Hamiltonian method to obtain the ground-state tunnelling level
splittings. For this case, the effective Hamiltonian can be expressed as
0 —hAGS
s :[ RN Y }

The energies aresh AYS-. Therefore, the tunnel splitting of the ground stateAi$S: =
2AYS- for the uniaxial symmetry.

To illustrate this, for the AFM particle withk; = 10° erg cn3, K, = 107 erg cn1?,
J = 3.0 x 10° erg cn3, particle radiusR = 30 A and the total spin in one sublattice
S = 5000, the tunnel splitting would be 3 x 103 s~* for H/H, = 0.4 (¢ = 0.6) and
1.06 x 10° s7* for H/H, = 0.6 (¢ = 0.4). It is clearly shown that the tunnel splitting
increases significantly with the external magnetic field because the angle through which the
Néel vector must tunnel is decreased by the magnetic field.

(76)

4.3. Hexagonal symmetry

Our third example of MQC for the &kl vector is a system with hexagonal crystal symmetry,
which has six easy axes in the basal plane. Now the magnetocrystalline anisotropy energy
can be written as

E@®,¢) = K1sirf0 + Kysin* 6 + K3sin® 0 — K5 sin® 0 cog6¢). (77)

We assume thak; < 0 and O< K>, K3, K3 < |K31|. The easy directions of this system
are atd = /2 and¢ = 0, /3, 27/3, =, 47 /3, 5r/3. We denote these six states|af
12), 13), |4), |5) and|6); other energy minima will repeat the six states with periad 2
Since |K1| > K>, K3, K5 > 0, the Neel vector is forced to lie in the—y plane. We
find that the instanton solution of the equations of motion for equation (77) is given by

0=m/2
sin3p = = (78)
" coshBwgt)
corresponding to the variation @f from ¢ = 0 att = —co t0 ¢ = 7/3 att = 4+00. wp

in equation (78) is defined as
Vv

The classical action associated with this instanton for the hexagonal symmetry is found to

be
4 [K]
SHS- =3 735. (79)

We now turn to the prefactors. Now,
N\ 2
%Eoe + % COS@(Z—?)
= |K1| — 2K — 3K3 + 3K, — 8K, Sir?(3¢) = |K1| + 0(|K1]) > O (80)
SO we can integrate odh. Then the relation between and the new time variable is
found to be
JVxL 8 Ky 1
"T 22K T 31Kl w0

(81)
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It is easy to differentiate the instanton solution to obtain

dp Vv ; K} JK}
P 4}_1—5,/JK3 exp<—8ﬁ> exp<—3 |K1|ZS§> as¢ — oo. (82)

Thus,

/

\% K
=4— JJK.exp| —8—2
el =4gsv ks p< |K1|)

| JK!
=3 3. 83
H K2 (83)

Substituting equation (83) into the general formula (22), we obtain one instanton’s
contribution,7ZA%-3-, to the tunnel splitting of this system as

and

_ 25/2 JKL\Y* K/ s
RARS = Z_vy|K 3 ) s V2expl —8—2 |e S, 84
oL m | l|<|K1|2) P |K1] (84
For this case, the matrix form of the effective Hamiltonian is
01 0 0 0 1
1 01 000
_ 01 0100
o _TAHS.
Heff - hAO.l. 00 1 010 (85)
0 00101
1 00010

The energies are-2i A%+ and £h AL, the latter two levels being doubly degenerate.
Therefore, the greatest tunnel splitting of the ground statafls" = 4A%-3-, which is
equivalent tok, = 4 in the general formula (22). .

For K; = 1C° erg cnt3, |K4| = 10" erg cnt3, J = 3.0x 10° erg cn3, R = 30 A and
S = 5000 , the greatest tunnel splitting of the ground state is found ta4¥#>810~3 s~2.

5. Summary

The phenomena of macroscopic quantum tunnelling and coherence oé#hevdttor have

been considered for small single-domain AFM particles in the present work. Eeé N
vector can tunnel out of the metastable easy directions or resonate between energetically
degenerate easy directions at low temperature. The previously known WKB exponents in
the tunnelling rates for these processes are supplemented by calculating the prefactors in this
paper. The formalism for evaluating both the WKB exponent and the Van Vleck fluctuation
determinant for the tunnelling rate (in the MQT problem) or the tunnel splitting (in the
MQC problem) of the Mel vector has been developed by using the spin-coherent-state path
integral, on the basis of the two-sublattice model for AFM particles. Then this formalism is
applied to investigate the tunnelling behaviours of tfeeeNsector for all of the major crystal
symmetries. Both the WKB exponent and the pre-exponential factors in the tunnelling rate
or the tunnel splitting are found exactly for each case with the help of the instanton method
applied to the imaginary-time path integral. We hope that the theoretical results obtained in
the present work will stimulate more experiments whose aim is observing the macroscopic
guantum phenomena in small single-domain antiferromagnets.
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